A fraction, or fractional number is used to represent a part of a whole number. Fractions consist of two numbers: numerator (above the line) and denominator (below the line).
The denominator tells you the number of equal parts into which something is divided.
The numerator tells you how many of these equal parts are being considered.
The numerator is smallar than the denominator in a proper fraction. In an improper fraction, the numerator is greater than or equal to the denominator.
When a term contains both a whole number and a fraction, it is called a mixed number.
Example: $ 3\frac{1}{2} $, $ 5\frac{3}{4} $, $ 7\frac{5}{6} $
Example: $ 0.\overline{7} $ sayısını kesirli olarak yazalım.
\begin{align} x = 0.\overline{7} & = 0.7777... \\ 10x = 7.7777... & = 7 + 0.7777... = 7 + x \\ \end{align}
\begin{align} 10x = 7.\overline{7}& \\ \underline{-\quad x = 0.\overline{7} }& \\ 9x = 7& \end{align}
\begin{align} 9x = 7 \\ x = \frac{7}{9} \end{align}
Fractional State | Decimal State | Percentage Status |
---|---|---|
$ \frac{1}{100} $ | 0.01 | %1 |
$ \frac{1}{8} $ | 0,125 | %12,5 |
$ \frac{3}{8} $ | 0,375 | %37,5 |
$ \frac{5}{8} $ | 0.625 | %62,5 |
$ \frac{6}{8} = \frac{3}{4} $ | 0.75 | %75 |
$ \frac{7}{8} $ | 0.875 | %87,5 |
UCH Viki'den alıntılanmıştır. https://wiki.ulascemh.com/doku.php?id=en:math:algebra:number:rational